Basically, there are two different types of sample designs, namely, non-probability sampling and probability sampling. Each of the two is described below.

(1) ** Non-probability sampling**: This type of sampling is also known as deliberate sampling, purposive sampling, or judgement sampling. In this sampling procedure, the organisers of the inquiry deliberately choose the particular units of the universe to compose a sample on the basis that the small mass selected out of a large one would represent the whole. For example, if economic conditions of the population living in a state are to be studied, a few cities and towns can be deliberately selected for intensive study on the principle that they can represent the entire state. Besides, the investigator may select a sample yielding results favorable to his point of view. In case that happens, the entire inquiry may get vitiated. Thus, there exists the danger of bias entering into this type of sampling technique. However, if the investigators are impartial, work without bias and have the necessary experience so as to take sound judgement, the obtained results of an analysis of deliberately selected sample may be tolerably reliable.

*Quota sampling* is also an example of non-probability sampling. In this type of sampling the interviewers are simply given quotas to be filled from the different strata, with some instructions regarding filling up the quotas. Moreover, this type of sampling is relatively inexpensive and quite convenient.

(2) ** Probability sampling**: This type of sampling is also known as random sampling or chance sampling. This sampling procedure gives each element in the population an equal chance of getting selected for the sample; besides, all choices are independent of one another. The obtained results of probability sampling can be assured in terms of probability. In other words, we can measure the errors of estimation or the significance of obtained results from a random sample. In fact, due to this very reason probability sampling design is superior to the deliberate sampling design. Probability sampling ensures the law of Statistical Regularity, which states that if the sample chosen is a random one, the sample will have the same composition and characteristics as the universe. Hence, probability sampling is more or less the best technique to select a representative sample.